首页> 外文OA文献 >Experimental Demonstration of Phase Modulation and Motion Sensing Using Graphene-Integrated Metasurfaces
【2h】

Experimental Demonstration of Phase Modulation and Motion Sensing Using Graphene-Integrated Metasurfaces

机译:使用石墨烯集成的超表面进行相位调制和运动感测的实验演示

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Strong interaction of graphene with light accounts for one of its most remarkable properties: the ability to absorb 2.3% of the incident light’s energy within a single atomic layer. Free carrier injection via field-effect gating can dramatically vary the optical properties of graphene, thereby enabling fast graphene-based modulators of the light intensity. However, the very thinness of graphene makes it difficult to modulate the other fundamental property of the light wave: its optical phase. Here we demonstrate that considerable phase control can be achieved by integrating a single-layer graphene (SLG) with a resonant plasmonic metasurface that contains nanoscale gaps. By concentrating the light intensity inside of the nanogaps, the metasurface dramatically increases the coupling of light to the SLG and enables control of the phase of the reflected mid-infrared light by as much as 55° via field-effect gating. We experimentally demonstrate graphene-based phase modulators that maintain the amplitude of the reflected light essentially constant over most of the phase tuning range. Rapid nonmechanical phase modulation enables a new experimental technique, graphene-based laser interferometry, which we use to demonstrate motion detection with nanoscale precision. We also demonstrate that by the judicious choice of a strongly anisotropic metasurface the graphene-controlled phase shift of light can be rendered polarization-dependent. Using the experimentally measured phases for the two orthogonal polarizations, we demonstrate that the polarization state of the reflected light can be by modulated by carrier injection into the SLG. These results pave the way for novel high-speed graphene-based optical devices and sensors such as polarimeters, ellipsometers, and frequency modulators.
机译:石墨烯与光的强相互作用是其最显着的特性之一:能够在单个原子层内吸收2.3%的入射光能量。通过场效应门控进行的自由载流子注入可以显着改变石墨烯的光学特性,从而实现基于石墨烯的光强度快速调制器。但是,石墨烯的极薄性使其难以调制光波的另一基本特性:其光学相位。在这里,我们证明,通过将单层石墨烯(SLG)与包含纳米级间隙的共振等离子超表面集成在一起,可以实现可观的相位控制。通过集中纳米间隙内部的光强度,超颖表面极大地增强了光与SLG的耦合,并通过场效应门控将反射的中红外光的相位控制多达55°。我们通过实验证明了基于石墨烯的相位调制器,该调制器在大多数相位调整范围内都能使反射光的幅度基本恒定。快速的非机械相位调制实现了一种新的实验技术,即基于石墨烯的激光干涉术,该技术用于演示具有纳米级精度的运动检测。我们还表明,通过明智地选择强各向异性的超表面,可以使光的石墨烯控制相移与偏振有关。使用两个正交偏振的实验测量相位,我们证明了可以通过向SLG中注入载流子来调制反射光的偏振状态。这些结果为新型的基于高速石墨烯的光学设备和传感器(例如偏振计,椭圆仪和频率调制器)铺平​​了道路。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号